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Introduction – Parallel File Systems

• Space and bandwidth scale with number of 

object storage hardware. 

→ Up to O(TB/s).

• Storage metadata stored as inode per file. 

→ minimize number of files.

• Lookup suffers contention if overutilized by 

many requests.

→ minimize I/O operations.

[1] M. Seiz et al. Lustre I/O Performance Investigations on Hazel Hen: Experiments and Heuristics. J. Supercomut 77, 12508-12536 (2021)

Figure modified and used under CC-BY 4.0 from [1]

Optimize number of files, I/O operations and access size.
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Introduction – Parallel File Systems

[2] https://wiki.lustre.org – 6th June 2023 10AM

Figure modified from [2]

Optimize number of files, I/O operations and access size.

• Space and bandwidth scale with number of 

object storage hardware. 

→ Up to O(TB/s).

• Storage metadata stored as inode per file. 

→ minimize number of files.

• Lookup suffers contention if overutilized by 

many requests.

→ minimize I/O operations.

https://wiki.lustre.org/
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Introduction – Parallel I/O Libraries

MPI-IO

• N:1 model or M:1 model.

• Plain binary data files.

• Flexible choice of # of writers at runtime.

• Can handle irregular access pattern.

• N:M model.

• Structure of binary files by metadata.

• Flexible choice of # of files at runtime.

• Requires contiguous access pattern.

ADIOS2

Figure modified and used 

under CC-BY 4.0 from [1]

[1] M. Seiz et al. Lustre I/O Performance Investigations on Hazel Hen: Experiments and Heuristics. J. Supercomut 77, 12508-12536 (2021)

.
`-- adios2.bp

|-- data.0
|-- data.1
|-- data.*
…
|-- md.0
|-- md.idx
|-- mmd.0
`-- profiling.json

Figure modified and used 

under CC-BY 4.0 from [1]Figure modified and used under CC-BY 4.0 from [1]
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Introduction – I/O Access Patterns

Irregular Access Pattern 

• Irregular mapping required.

• Assembly overhead during I/O.

• Start and size required.

• No reorganization.

Contiguous Access Pattern

Simple I/O access patterns optimize time 

spend in reorganization overheads.

Rank 0 Rank 1

File File

Rank 1Rank 0
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OpenFOAM I/O Formats

OpenFOAM I/O Formats
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• N:N model→ # of inodes scales with # of processors

• Once the case is decomposed:

• Only restarts on the same decomposition.

• Modification in boundary conditions are tedious.

• Decomposition, reconstruction, and redistribution are costly for 

the time-to-solution.

OpenFOAM I/O Formats

.
|-- processor0
|   |-- 0
|   |    |-- p
|   |     `-- U
|    `-- constant
|          `-- polyMesh
|               |-- boundary
|               |-- boundaryProcAddressing
|               |-- cellProcAddressing
|               |-- faceProcAddressing
|               |-- faces
|               |-- neighbour
|               |-- owner
|               |-- pointProcAddressing
|                `-- points
|-- processor1
|   |-- 0
|   |    |-- p
|   |     `-- U

Case structure parallel run

Uncollated Format

[1] M. Seiz et al. Lustre I/O Performance Investigations on Hazel Hen: Experiments and Heuristics. J. Supercomut 77, 12508-12536 (2021)

Figure modified and used under 

CC-BY 4.0 from [1]

Showstopper at scale.
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• N:M model→ Reduces the number of inodes.

• Once the case is decomposed:

• Only restarts on the same decomposition.

• Adds considerable runtime overhead.

• Decomposition, reconstruction, and redistribution are costly for 

the time-to-solution.

OpenFOAM I/O Formats

Collated Format

[1] M. Seiz et al. Lustre I/O Performance Investigations on Hazel Hen: Experiments and Heuristics. J. Supercomput 77, 12508-12536 (2021)
[3] https://www.archer2.ac.uk/training/courses/200624-openfoam-io/ - 14th Oct 2022 10AM

Figure modified from [3]

More than 50% of the 

runtime spend in I/O.
Figure modified and used under 

CC-BY 4.0 from [1]

https://www.archer2.ac.uk/training/courses/200624-openfoam-io/
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• N:M model→ Reduces the number of inodes.

• Once the case is decomposed:

• Only restarts on the same decomposition.

• Adds considerable runtime overhead.

• Decomposition, reconstruction, and redistribution are costly for 

the time-to-solution.

OpenFOAM I/O Formats

Collated Format

[1] M. Seiz et al. Lustre I/O Performance Investigations on Hazel Hen: Experiments and Heuristics. J. Supercomut 77, 12508-12536 (2021)
[3] https://www.archer2.ac.uk/training/courses/200624-openfoam-io/ - 14th Oct 2022 10AM

Figure modified from [3]

More than 100% 

increase in runtime.

Limited scalability.

Figure modified and used under 

CC-BY 4.0 from [1]

https://www.archer2.ac.uk/training/courses/200624-openfoam-io/
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OpenFOAM I/O Formats

Data layout of  OpenFOAM

• Storage of mesh connectivity by owner and neighbour cell IDs of faces.

• Boundary patch faces follow internal faces.

• Decomposition renumbers and fragments the mesh.

• Fragments would pose an irregular I/O access pattern.
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OpenFOAM I/O Formats

Data layout of  OpenFOAM

• Storage of mesh connectivity by owner and neighbour cell IDs of faces.

• Boundary patch faces follow internal faces.

• Decomposition renumbers and fragments the mesh.

• Fragments would pose an irregular I/O access pattern.
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Parallel I/O for OpenFOAM

Towards Parallel I/O for OpenFOAM
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Parallel I/O for OpenFOAM

Parallel I/O for exascale ready OpenFOAM.

Objectives

1. Reduce number of files and optimize I/O performance at scale.→ Current showstopper for scalability.

2. Decrease time-to-solution by improved I/O access pattern. → “Performance optimization” sits here.

Approach

• Development of an I/O proxy application to compare I/O schemes and libraries. 

• Design and implement contiguous I/O access pattern for FOAM-native parallel I/O.
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Parallel I/O for OpenFOAM

I/O Proxy Application

• Simple heat transfer solver with contiguous data layout.

• Parallel I/O at scale with ADIOS2 and MPI-IO. 

• Wall time of opening, writing, and closing.

• Weak scaling benchmark of writing 2MiB per processor.

• Blocking semantics in MPI-IO render ‘slower’ I/O ops.

• Non-blocking semantics of ADIOS2 facilitate ‘faster’ I/O ops.

32 racks are 524’288 cores 

and MPI ranks on the HAWK 

supercomputer at HLRS.
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Parallel I/O for OpenFOAM

Reduced foam-extend 4.1 for design of parallel I/O

• Native implementation adds ADIOS2 in IOstream family of 

classes used by registered IOobjects.

• I/O serial in design of insertion (<<) and extraction (>>) 

operators.

• Information for ADIOS2 is transferred and buffered 

during serial call tree of << and >>.

• Refactoring of I/O for polyMesh.

• Coherent data layout in mesh I/O.

• Refactoring of I/O for GeometricField.

• Adaptation of coherent data layout.

• Different offsets of volume, surface, and point fields.

bool Foam::GeometricField::writeData(Ostream& os)
{

os << *this;
return os.good();

}

Foam::Ostream& Foam::operator<<

(

Ostream& os,

const GeometricField gf

)

{

// Logic for serial uncollated I/O

// Refactored for additions with parallel I/O

}

/* Somewhere in Ostream derived source */

…

adiosStream.open(file);

adiosStream.write(identifier, start, size, data);

adiosStream.close();

…

ADIOS2 implementation in 

core (libfoam) library.
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Parallel I/O for OpenFOAM

Coherent and sliceable data layout of the mesh.

• Upper triangular order/sorted by ownership incorporating boundary faces.

• Face-ordered ‘owner’ list → ‘ownerStart’ as cell-ordered list as entry point for coherence.

• Partitioning into slices of cell-ordered lists.

• Owners determine slices in face-ordered lists.

• Slices of point-ordered lists known by maximum ID in faces.
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Parallel I/O for OpenFOAM

Coherent and sliceable data layout of the mesh.

• Upper triangular order/sorted by ownership incorporating boundary faces.

• Face-ordered ‘owner’ list → ‘ownerStart’ as cell-ordered list as entry point for coherence.
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Parallel I/O for OpenFOAM
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Coherent and sliceable data layout of the mesh.

• Upper triangular order/sorted by ownership incorporating boundary faces.

• Face-ordered ‘owner’ list → ‘ownerStart’ as cell-ordered list as entry point for coherence.

• Partitioning into slices of cell-ordered lists.

• Owners determine slices in face-ordered lists.

• Slices of point-ordered lists known by maximum ID in faces.



20

Parallel I/O for OpenFOAM

Coherent Data Layout for Field I/O

• Field data layout adopts coherence of mesh.

• Geometric fields consist of internal field and boundary patches. 

• Enables complex boundary fields.

• Processor patches are either not present (volume fields) or integrated into the 

internal field (surface fields).

• Plain time folders for field I/O in serial and parallel runs (no processor folders)

• Binary field data is stored in ADIOS2 files, i.e. data.bp

• Field metadata stored in ASCII files, e.g. p, phi, U

.
|-- 0
|   |-- p
|   `-- U
|-- 0.05
|   |-- data.bp
|   |-- p
|   |-- phi
|   `-- U
|-- 0.1
|   |-- data.bp
|   |-- p
|   |-- phi
|   `-- U
|-- constant
|   |-- polyMesh.bp
|   `-- transportProperties
...

Case structure serial/parallel run
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Parallel I/O for OpenFOAM

Benefits

1. Reduction of inodes:

• Exascale ready I/O strategy.

• Flexible aggregation pattern at runtime.

2. Simplicity from coherent data layout:

• Start a parallel run (without decomposition) on any number of cores.

• No reconstruction for post-processing.

• Edit ASCII metadata like boundary conditions in one place.

.
|-- 0
|   |-- p
|   `-- U
|-- 0.05
|   |-- data.bp
|   |-- p
|   |-- phi
|   `-- U
|-- 0.1
|   |-- data.bp
|   |-- p
|   |-- phi
|   `-- U
|-- constant
|   |-- polyMesh.bp
|   `-- transportProperties
...

Case structure serial/parallel run

Work on your parallel case as 

if it was a serial case.  

Demo.

Significantly reduced time to solution.
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Conclusion

• Developed a new design for high performance parallel I/O.

• Implementation in the core (libfoam) of foam-extend 4.1.

1. Reduction of inodes. 

• Lower load on parallel file systems.

2. Coherent data layout simplifies pre- and post-processing of parallel cases. 

• Simplified user experience at all scales.

• Significant reduction of time-to-solution. 

Outlook

• Detailed benchmarks.

• Release into production code. 
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