
Exploitation of Exascale Systems for Open-Source
Computational Fluid Dynamics by Mainstream Industry

Funding Body: EuroHPC-03-2019

Call: H2020-JTI-EuroHPC-2019-1

Project Number: 9564167

Project Duration: 1st April 2021 to 31st March 2024

June 12th, 2023

Presenter: R. Gregor Weiß

Sergey Lesnik, Flavio C. C. Galeazzo, Henrik Rusche, Andreas Ruopp

1st exaFOAM Workshop

Parallel I/O

2

• Introduction to Parallel I/O

• OpenFOAM I/O Formats

• Towards Parallel I/O for OpenFOAM

• Conclusion

Agenda

3

Introduction – Parallel File Systems

• Space and bandwidth scale with number of

object storage hardware.

→ Up to O(TB/s).

• Storage metadata stored as inode per file.

→ minimize number of files.

• Lookup suffers contention if overutilized by

many requests.

→ minimize I/O operations.

[1] M. Seiz et al. Lustre I/O Performance Investigations on Hazel Hen: Experiments and Heuristics. J. Supercomut 77, 12508-12536 (2021)

Figure modified and used under CC-BY 4.0 from [1]

Optimize number of files, I/O operations and access size.

4

Introduction – Parallel File Systems

[2] https://wiki.lustre.org – 6th June 2023 10AM

Figure modified from [2]

Optimize number of files, I/O operations and access size.

• Space and bandwidth scale with number of

object storage hardware.

→ Up to O(TB/s).

• Storage metadata stored as inode per file.

→ minimize number of files.

• Lookup suffers contention if overutilized by

many requests.

→ minimize I/O operations.

https://wiki.lustre.org/

5

Introduction – Parallel I/O Libraries

MPI-IO

• N:1 model or M:1 model.

• Plain binary data files.

• Flexible choice of # of writers at runtime.

• Can handle irregular access pattern.

• N:M model.

• Structure of binary files by metadata.

• Flexible choice of # of files at runtime.

• Requires contiguous access pattern.

ADIOS2

Figure modified and used

under CC-BY 4.0 from [1]

[1] M. Seiz et al. Lustre I/O Performance Investigations on Hazel Hen: Experiments and Heuristics. J. Supercomut 77, 12508-12536 (2021)

.
`-- adios2.bp

|-- data.0
|-- data.1
|-- data.*
…
|-- md.0
|-- md.idx
|-- mmd.0
`-- profiling.json

Figure modified and used

under CC-BY 4.0 from [1]Figure modified and used under CC-BY 4.0 from [1]

6

Introduction – I/O Access Patterns

Irregular Access Pattern

• Irregular mapping required.

• Assembly overhead during I/O.

• Start and size required.

• No reorganization.

Contiguous Access Pattern

Simple I/O access patterns optimize time

spend in reorganization overheads.

Rank 0 Rank 1

File File

Rank 1Rank 0

7

OpenFOAM I/O Formats

OpenFOAM I/O Formats

8

• N:N model→ # of inodes scales with # of processors

• Once the case is decomposed:

• Only restarts on the same decomposition.

• Modification in boundary conditions are tedious.

• Decomposition, reconstruction, and redistribution are costly for

the time-to-solution.

OpenFOAM I/O Formats

.
|-- processor0
| |-- 0
| | |-- p
| | `-- U
| `-- constant
| `-- polyMesh
| |-- boundary
| |-- boundaryProcAddressing
| |-- cellProcAddressing
| |-- faceProcAddressing
| |-- faces
| |-- neighbour
| |-- owner
| |-- pointProcAddressing
| `-- points
|-- processor1
| |-- 0
| | |-- p
| | `-- U

Case structure parallel run

Uncollated Format

[1] M. Seiz et al. Lustre I/O Performance Investigations on Hazel Hen: Experiments and Heuristics. J. Supercomut 77, 12508-12536 (2021)

Figure modified and used under

CC-BY 4.0 from [1]

Showstopper at scale.

9

• N:M model→ Reduces the number of inodes.

• Once the case is decomposed:

• Only restarts on the same decomposition.

• Adds considerable runtime overhead.

• Decomposition, reconstruction, and redistribution are costly for

the time-to-solution.

OpenFOAM I/O Formats

Collated Format

[1] M. Seiz et al. Lustre I/O Performance Investigations on Hazel Hen: Experiments and Heuristics. J. Supercomput 77, 12508-12536 (2021)
[3] https://www.archer2.ac.uk/training/courses/200624-openfoam-io/ - 14th Oct 2022 10AM

Figure modified from [3]

More than 50% of the

runtime spend in I/O.
Figure modified and used under

CC-BY 4.0 from [1]

https://www.archer2.ac.uk/training/courses/200624-openfoam-io/

10

• N:M model→ Reduces the number of inodes.

• Once the case is decomposed:

• Only restarts on the same decomposition.

• Adds considerable runtime overhead.

• Decomposition, reconstruction, and redistribution are costly for

the time-to-solution.

OpenFOAM I/O Formats

Collated Format

[1] M. Seiz et al. Lustre I/O Performance Investigations on Hazel Hen: Experiments and Heuristics. J. Supercomut 77, 12508-12536 (2021)
[3] https://www.archer2.ac.uk/training/courses/200624-openfoam-io/ - 14th Oct 2022 10AM

Figure modified from [3]

More than 100%

increase in runtime.

Limited scalability.

Figure modified and used under

CC-BY 4.0 from [1]

https://www.archer2.ac.uk/training/courses/200624-openfoam-io/

11

OpenFOAM I/O Formats

Data layout of OpenFOAM

• Storage of mesh connectivity by owner and neighbour cell IDs of faces.

• Boundary patch faces follow internal faces.

• Decomposition renumbers and fragments the mesh.

• Fragments would pose an irregular I/O access pattern.

12

OpenFOAM I/O Formats

Data layout of OpenFOAM

• Storage of mesh connectivity by owner and neighbour cell IDs of faces.

• Boundary patch faces follow internal faces.

• Decomposition renumbers and fragments the mesh.

• Fragments would pose an irregular I/O access pattern.

13

Parallel I/O for OpenFOAM

Towards Parallel I/O for OpenFOAM

14

Parallel I/O for OpenFOAM

Parallel I/O for exascale ready OpenFOAM.

Objectives

1. Reduce number of files and optimize I/O performance at scale.→ Current showstopper for scalability.

2. Decrease time-to-solution by improved I/O access pattern. → “Performance optimization” sits here.

Approach

• Development of an I/O proxy application to compare I/O schemes and libraries.

• Design and implement contiguous I/O access pattern for FOAM-native parallel I/O.

15

Parallel I/O for OpenFOAM

I/O Proxy Application

• Simple heat transfer solver with contiguous data layout.

• Parallel I/O at scale with ADIOS2 and MPI-IO.

• Wall time of opening, writing, and closing.

• Weak scaling benchmark of writing 2MiB per processor.

• Blocking semantics in MPI-IO render ‘slower’ I/O ops.

• Non-blocking semantics of ADIOS2 facilitate ‘faster’ I/O ops.

32 racks are 524’288 cores

and MPI ranks on the HAWK

supercomputer at HLRS.

16

Parallel I/O for OpenFOAM

Reduced foam-extend 4.1 for design of parallel I/O

• Native implementation adds ADIOS2 in IOstream family of

classes used by registered IOobjects.

• I/O serial in design of insertion (<<) and extraction (>>)

operators.

• Information for ADIOS2 is transferred and buffered

during serial call tree of << and >>.

• Refactoring of I/O for polyMesh.

• Coherent data layout in mesh I/O.

• Refactoring of I/O for GeometricField.

• Adaptation of coherent data layout.

• Different offsets of volume, surface, and point fields.

bool Foam::GeometricField::writeData(Ostream& os)
{

os << *this;
return os.good();

}

Foam::Ostream& Foam::operator<<

(

Ostream& os,

const GeometricField gf

)

{

// Logic for serial uncollated I/O

// Refactored for additions with parallel I/O

}

/* Somewhere in Ostream derived source */

…

adiosStream.open(file);

adiosStream.write(identifier, start, size, data);

adiosStream.close();

…

ADIOS2 implementation in

core (libfoam) library.

17

Parallel I/O for OpenFOAM

Coherent and sliceable data layout of the mesh.

• Upper triangular order/sorted by ownership incorporating boundary faces.

• Face-ordered ‘owner’ list → ‘ownerStart’ as cell-ordered list as entry point for coherence.

• Partitioning into slices of cell-ordered lists.

• Owners determine slices in face-ordered lists.

• Slices of point-ordered lists known by maximum ID in faces.

18

Parallel I/O for OpenFOAM

Coherent and sliceable data layout of the mesh.

• Upper triangular order/sorted by ownership incorporating boundary faces.

• Face-ordered ‘owner’ list → ‘ownerStart’ as cell-ordered list as entry point for coherence.

• Partitioning into slices of cell-ordered lists.

• Owners determine slices in face-ordered lists.

• Slices of point-ordered lists known by maximum ID in faces.

19

Parallel I/O for OpenFOAM

c
o

h
e

re
n

c
e

Coherent and sliceable data layout of the mesh.

• Upper triangular order/sorted by ownership incorporating boundary faces.

• Face-ordered ‘owner’ list → ‘ownerStart’ as cell-ordered list as entry point for coherence.

• Partitioning into slices of cell-ordered lists.

• Owners determine slices in face-ordered lists.

• Slices of point-ordered lists known by maximum ID in faces.

20

Parallel I/O for OpenFOAM

Coherent Data Layout for Field I/O

• Field data layout adopts coherence of mesh.

• Geometric fields consist of internal field and boundary patches.

• Enables complex boundary fields.

• Processor patches are either not present (volume fields) or integrated into the

internal field (surface fields).

• Plain time folders for field I/O in serial and parallel runs (no processor folders)

• Binary field data is stored in ADIOS2 files, i.e. data.bp

• Field metadata stored in ASCII files, e.g. p, phi, U

.
|-- 0
| |-- p
| `-- U
|-- 0.05
| |-- data.bp
| |-- p
| |-- phi
| `-- U
|-- 0.1
| |-- data.bp
| |-- p
| |-- phi
| `-- U
|-- constant
| |-- polyMesh.bp
| `-- transportProperties
...

Case structure serial/parallel run

21

Parallel I/O for OpenFOAM

Benefits

1. Reduction of inodes:

• Exascale ready I/O strategy.

• Flexible aggregation pattern at runtime.

2. Simplicity from coherent data layout:

• Start a parallel run (without decomposition) on any number of cores.

• No reconstruction for post-processing.

• Edit ASCII metadata like boundary conditions in one place.

.
|-- 0
| |-- p
| `-- U
|-- 0.05
| |-- data.bp
| |-- p
| |-- phi
| `-- U
|-- 0.1
| |-- data.bp
| |-- p
| |-- phi
| `-- U
|-- constant
| |-- polyMesh.bp
| `-- transportProperties
...

Case structure serial/parallel run

Work on your parallel case as

if it was a serial case.

Demo.

Significantly reduced time to solution.

22

Conclusion

• Developed a new design for high performance parallel I/O.

• Implementation in the core (libfoam) of foam-extend 4.1.

1. Reduction of inodes.

• Lower load on parallel file systems.

2. Coherent data layout simplifies pre- and post-processing of parallel cases.

• Simplified user experience at all scales.

• Significant reduction of time-to-solution.

Outlook

• Detailed benchmarks.

• Release into production code.

23

This project has received funding from the European High-Performance Computing Joint Undertaking Joint
Undertaking (JU) under grant agreement No 956416. The JU receives support from the European Union’s
Horizon 2020 research and innovation programme and France, United Kingdom, Germany, Italy, Croatia,
Spain, Greece, and Portugal.

Questions?

Thank you.

Presenter: R. Gregor Weiß

gregor.weiss@hlrs.de

exafoam-project

exafoamproject

https://exafoam.eu/

